Symbolic Modeling of Genetic Regulatory Networks

نویسندگان

  • Daniel Mateus
  • Jean-Pierre Gallois
  • Jean-Paul Comet
  • Pascale Le Gall
چکیده

Understanding the functioning of genetic regulatory networks supposes a modeling of biological processes in order to simulate behaviors and to reason on the model. Unfortunately, the modeling task is confronted to incomplete knowledge about the system. To deal with this problem we propose a methodology that uses the qualitative approach developed by Thomas. A symbolic transition system can represent the set of all possible models in a concise and symbolic way. We introduce a new method based on model-checking techniques and symbolic execution to extract constraints on parameters leading to dynamics coherent with known behaviors. Our method allows us to efficiently respond to two kinds of questions: is there any model coherent with a certain hypothetic behavior? Are there behaviors common to all selected models? The first question is illustrated with the example of the mucus production in Pseudomonas aeruginosa while the second one is illustrated with the example of immunity control in bacteriophage lambda.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network

Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption.  On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications.  This is not an unrealistic goal since genes which are regulated by gene regulatory ...

متن کامل

Neuro-ACT Cognitive Architecture Applications in Modeling Driver’s Steering Behavior in Turns

Cognitive Architectures (CAs) are the core of artificial cognitive systems. A CA is supposed to specify the human brain at a level of abstraction suitable for explaining how it achieves the functions of the mind. Over the years a number of distinct CAs have been proposed by different authors and their limitations and potentials were investigated. These CAs are usually classified as symbolic and...

متن کامل

Inferring parameters of genetic regulatory networks with symbolic formal methods

Understanding the functioning of genetic regulatory networks supposes a modeling of biological processes in order to simulate behaviors and to reason on the model. Unfortunately, the modeling task is confronted to incomplete knowledge about the system. To deal with this problem we propose a methodology that uses the qualitative approach developed by R. Thomas. A symbolic transition system can r...

متن کامل

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

Symbolic reachability analysis of genetic regulatory networks using discrete abstractions

We use hybrid-systems techniques for the analysis of reachability properties of a class of piecewise-affine (PA) differential equations that are particularly suitable for the modeling of genetic regulatory networks. More specifically, we introduce a hyperrectangular partition of the state space that forms the basis for a discrete abstraction preserving the sign of the derivatives of the state v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bioinformatics and computational biology

دوره 5 2B  شماره 

صفحات  -

تاریخ انتشار 2007